锅炉通引风机

变频器调试必须要格外注意哪些参数

发布时间:2024-04-01 21:47:12 文章作者:上海五星体育cba直播

  【导读】变频器的设定参数较多,每个参数均有一定的选择范围,使用中常常遇到因个别参数设置不当,导致变频器异常工作的现象。 因此,变频器调试是从正确设置变频器参数开始的。 下面总结了16个基本变频器参数设置方法,供大家参考。

  即速度控制、转距控制、PID控制或其他方式。 采取控制方式后,一般要根据控制精度进行静态或动态辨识。

  即电机运行的最小转速,电机在低转速下运行时,其散热性能很差,电机长时间运行在低转速下,会导致电机烧毁。 而且低速时,其电缆中的电流也会增大,也会导致电缆发热。

  一般的变频器最大频率到60Hz,有些甚至到400Hz,高频率将使电机高速运转,这对普通电机来说,其轴承不能长时间的超额定转速运行,电机的转子是否能承受这样的离心力。

  载波频率设置的越高其高次谐波分量越大,这和电缆的长度,电机发热,电缆发热变频器发热等因素是紧密关联的。

  变频器在参数中设定电机的功率、电流、电压、转速、最大频率,这些参数可以从电机铭牌中直接得到。

  在某个频率点上,有一定的概率会发生共振现象,特别在整个装置比较高时; 在控制压缩机时,要避免压缩机的喘振点。

  加速时间就是输出频率从0上升到最大频率所需时间,减速时间是指从最大频率下降到0所需时间。 通常用频率设定信号上升、下降来确定加减速时间。 在电动机加速时须限制频率设定的上升率以防止过电流,减速时则限制下降率以防止过电压。

  加速时间设定要求:将加速电流限制在变频器过电流容量以下,不使过流失速而引起变频器跳闸; 减速时间设定要点是:防止平滑电路电压过大,不使再生过压失速而使变频器跳闸。 加减速时间可根据负载计算出来,但在调试中常采取按负载和经验先设定较长加减速时间,通过起、停电动机观察有无过电流、过电压报警; 然后将加减速设定时间逐渐缩短,以运转中不发生报警为原则,重复操作几次,便可确定出最佳加减速时间。

  又叫转矩补偿,是为补偿因电动机定子绕组电阻所引起的低速时转矩降低,而把低频率范围f/V增大的方法。 设定为自动时,可使加速时的电压自动提升以补偿起动转矩,使电动机加速顺顺利利地进行。 如采用手动补偿时,根据负载特性,尤其是负载的起动特性,通过试验可选出较佳曲线。 对于变转矩负载,如选择不当会出现低速时的输出电压过高,而浪费电能的现象,甚至还会出现电动机带负载起动时电流大,而转速上不去的现象。

  本功能为保护电动机过热而设置,它是变频器内CPU根据运转电流值和频率计算出电动机的温升,从而进行过热保护。 本功能只适用于“一拖一 ”场合,而在“一拖多”时,则应在各台电动机上加装热继电器。 电子热保护设定值(%)=[电动机额定电流(A)/变频器额定输出电流(A)]×100%。

  即变频器输出频率的上、下限幅值。 频率限制是为防止误操作或外接频率设定信号源出故障,而引起输出频率的过高或过低,以防损坏设备的一种保护功能。 在应用中按真实的情况设定即可。 此功能还可作限速使用,如有的皮带输送机,由于输送物料不太多,为减少机械和皮带的磨损,可采用变频器驱动,并将变频器上限频率设定为某一频率值,这样就可使皮带输送机运行在一个固定、较低的工作速度上。

  有的又叫偏差频率或频率偏差设定。 其用途是当频率由外部模拟信号(电压或电流)进行设定时,可用此功能调整频率设定信号最低时输出频率的高低。 有的变频器当频率设定信号为0%时,偏差值可作用在0~fmax范围内,有的变频器(如明电舍、三垦)还可对偏置极性进行设定。 如在调试中当频率设定信号为0%时,变频器输出频率不为0Hz,而为xHz,则此时将偏置频率设定为负的xHz即可使变频器输出频率为0Hz。

  此功能仅在用外部模拟信号设定频率时才有效。 它是用来弥补外部设定信号电压与变频器内电压(+10V)的不一致问题; 同时方便模拟设定信号电压的选择,设定时,当模拟输入信号为最大时(如10V、5V或20mA),求出可输出f/V图形的频率百分数并以此为参数进行设定即可; 如外部设定信号为0-5V时,若变频器输出频率为0-50Hz,则将增益信号设定为200%即可。

  可为驱动转矩限制和制动转矩限制两种。 它是根据变频器输出电压和电流值,经CPU进行转矩计算,其可对加减速和恒速运行时的冲击负载恢复特性有显著改善。 转矩限制功能可实现自动加速和减速控制。 假设加减速时间小于负载惯量时间时,也能保证电动机按照转矩设定值自动加速和减速。

  驱动转矩功能提供了强大的起动转矩,在稳态运转时,转矩功能将控制电动机转差,而将电动机转矩限制在最大设定值内,当负载转矩突然增大时,甚至在加速时间设定过短时,也不可能会引起变频器跳闸。 在加速时间设定过短时,电动机转矩也不会超过最大设定值。 驱动转矩大对起动有利,以设置为80~100%较妥。

  制动转矩设定数值越小,其制动力越大,适合急加减速的场合,如制动转矩设定数值设置过大会出现过压报警现象。 如制动转矩设定为0% ,可使加到主电容器的再生总量接近于0,从而使电动机在减速时,不使用制动电阻也能减速至停转而不会跳闸。 但在有的负载上,如制动转矩设定为0%时,减速时会出现短暂空转现象,造成变频器反复起动,电流大幅度波动,严重时会使变频器跳闸,应引起注意。

  又叫加减速曲线选择。 一般变频器有线性、非线性和S三种曲线,通常大多选择线性曲线; 非线性曲线适用于变转矩负载,如风机等; S曲线适用于恒转矩负载,其加减速变化较为缓慢。 设定时可根据负载转矩特性,选择相应曲线,但也有例外,笔者在调试一台锅炉引风机的变频器时,先将加减速曲线选择非线性曲线,一起动运转变频器就跳闸,调整改变许多参数无效果,后改为S曲线后就正常了。 究其原因是:起动前引风机由于烟道烟气流动而自行转动,且反转而成为负向负载,这样选取了S曲线,使刚起动时的频率上升速度较慢,从而避免了变频器跳闸的发生,当然这是针对没有起动直流制动功能的变频器所采用的方法。

  控制矢量控制是基于理论上认为:异步电动机与直流电动机具有相同的转矩产生机理。 矢量控制方式是将定子电流分解成规定的磁场电流和转矩电流,分别来控制,同时将两者合成后的定子电流输出给电动机。 因此,从原理上可得到与直流电动机相同的控制性能。 采用转矩矢量控制功能,电动机在各种运行条件下都能输出最大转矩,尤其是电动机在低速运行区域。

  现在的变频器几乎都采用无反馈矢量控制,由于变频器能根据负载电流的大小和相位进行转差补偿,使电动机具有很硬的力学特性,对于多数场合已能满足规定的要求,不需在变频器的外部设置速度反馈电路。 这一功能的设定,可根据真实的情况在有效和无效中选择一项即可。

  与之有关的功能是转差补偿控制,其作用是为补偿由负载波动而引起的速度偏差,可加上对应于负载电流的转差频率。 这一功能大多数都用在定位控制。

  风机、水泵都属于减转矩负载,即随着转速的下降,负载转矩与转速的平方成比例减小,而具有节能控制功能的变频器设计有专用V/f模式,这种模式可改善电动机和变频器的效率,其可根据负载电流自动降低变频器输出电压,进而达到节能目的,可根据详细情况设置为有效或无效。

  要说明的是,电子热过载保护和频率限制这两个参数是很先进的,但有一些用户在设备改造中,根本没办法启用这两个参数,即启用后变频器跳闸频繁,停用后一切正常。 究其原因有:①原用电动机参数与变频器要求配用的电动机参数相差太大。 ②对设定参数功能了解不够,如节能控制功能只能用于V/f控制方式中,不能用于矢量控制方式中。 ③启用了矢量控制方式,但不进行电动机参数的手动设定和自动读取工作,或读取方法不当。

  在交流电动机调速方式中,变频器调速既能实现无级调速,又能节能,在工业生产里应用十分广泛。然而变频器常处在一个较“复杂”的环境中,本身输入侧是一个非线性的整流电路,外接电源电网含有谐波,还有别的设备的高次谐波等等。因此,尽管选择性能优良的变频器,但组建的系统中变频器运行效果不令人满意。大量工程实践证明,为了防止电网和其他干扰源对变频器的干扰,同时减少变频器将对别的设备和电网的影响,常在变频器的输入、输出端配置相应的滤波器、电抗器、断路器等外围设备。所以变频器保护外围设备的合理选择,是保证变频器正常运行的先决条件。但由于电源容量、输入电压、变频器与电动机的电缆长短、变频器输出频率的大小等不同,选择保护设备不能一概而论,势必给工程设

  外围设备的选择 /

  MSP430F449提供内部晶振和两个外部晶振的接口。 外部晶振分为高速晶振和低速晶振。低速晶振32768Hz直接接到晶振接口上,不需要匹配电容。其他频率的晶振接不接电容,接多大的电容参考datasheet的说明。 如此接了还不起振,找不到问题的解决方法。瞎搞了两天。 是一个方法的问题,遇到问题就查找datasheet,肯定是自己某些地方疏忽了。 我在datasheet里以关键字oscillator进行查找。发现忽略了AVss脚。 把AVss接地,晶振就起振了,RS232与主机通信问题解决。 值的一提的是,由于我还没入门,我觉得入门阶段 多看datasheet里面提供的标准应用,和TI提供的例程对我们学习M

  铝合金由于强度低、塑性好,并且具有良好的导电性、导热性及耐蚀性,在工业制造中得到广泛应用,特别是航空、航天、汽车、机械制造、船舶及化学工业等领域。但正是由于它质软和延展性好的特点,使其与钻头的前刀面或切削刃口持续长时间接触,出现粘刀和毛刺的情况,严重影响铝合金的钻孔切削质量。 为解决铝合金钻孔加工难点,应注意钻头的选择、定位精度、切削液的选择、切削速度等等。采用高切削速度和足够的进给速度,施加中低粘度的高润滑冷却液,是保证精加工表面光洁度的最佳方法。 特别是切削速度,在安全地切削环境下,在刀具可承受的范围内,应尽可能提高主轴转速是铝合金钻孔时的切削宗旨。高转速可以提供较大离心力,使得切屑在螺旋槽中更容易呈现喷射状排出,同时也可缩短

  时间测量:12路 固有分闸(合闸)时间 分闸(合闸)相内不同期 分闸(合闸)相间不同期 合闸(分闸)弹跳时间(弹跳次数) 测试范围:0.1ms~999.99ms 准确度:1%±(1%读数+2个字) 速度测量:刚分(刚合)速度 指定时间段(行程段或角度段)平均速度 测速范围:1mm传感器 0.01~25.00m/s, 0.1mm传感器 0.001~2.50m/s 0.5°角度传感器 1周波/ 0.5° 行程测量:动触头行程(行程) 接触行程(开距) 过冲行程或反程(超程) 传感器:50mm,分辨率:0.1mm 传感器:300mm(选配),分辨率:1mm 360线о 电流测量:电流为合分闸线圈的zu

  目前,微波功率放大器的设计方法主要有以下几种: (1)动态阻抗测量法。在实际的工作条件下,使用仪器测量功率管的动态输入阻抗以及输出阻抗。通常输出功率越大的功率管的输入输出阻抗越低,因此不容易得到准确数值。 (2)负载牵引测试法。现在有专门测量负载牵引用的仪器,把功率管装配到测试架上,接到负载牵引的仪器上面,使用仪器改变放大器输出端口的匹配负载,测量不同负载下的增益和输出功率。这些数据可以直接在电脑上存取,使用方便,比过去使用的负载牵引的测试方法要简单,但是该仪器价格比较昂贵,只有专业设计生产管子的厂家才会配备。 (3)非线性分析法。如果能得到功率管的大信号非线性模型,可以使用软件的非线性仿真功能来确定比较合适的负载阻抗

  的功率放大器设计 /

  变频器干扰处理办法有哪些? 随着工业自动化的发展,变频器作为一种常见的电力调节设备,被广泛应用于各个领域。然而,由于其特殊的工作原理,变频器常常会产生一些干扰问题,对别的设备和系统造成不良影响。本文将深入探讨变频器干扰处理的相关问题,提供详尽、详实、细致的解决方案,以便读者解决实际应用中的干扰问题。 一、了解变频器干扰的原因和类型 变频器干扰问题是由于变频器本身的工作特点产生的,主要包括电磁辐射干扰和电磁传导干扰两种类型。电磁辐射干扰是指变频器的工作过程中,产生的高频电磁波通过空气传播,影响周围设备的正常工作。电磁传导干扰是指变频器的工作过程中,高频电磁波通过导线、电缆等传导途径,进而影响别的设备和系统。 二、减少电磁辐射干扰的处

  0引言 随着我们国家经济的发展,城市中智能建筑大量增加,这些建筑大都采用中央空调提供舒适的办公或居住环境。但是中央空调能耗高的问题也在制约着中央空调的发展,因此节能、高效是中央空调系统的重要课题。下面以某写字楼的中央空调系统的设计为对象,介绍该系统在节能、高效应用方面的设计。 1系统组成 1.1中央空调系统的组成 中央空调系统主要由冷热源、冷冻水系统、冷却水系统、冷却塔和空调末端等组成。与一般中央空调系统不同的地方是该系统的冷源是靠水冷机组提供的,热源是使用市政蒸汽通过热板换进行热量交换增加循环水水温来实现的。采用两台130KW的压缩式冷水机组提供冷源,用于制冷;采用两套热板换进行热交换增加循环水水温,用于制热。这种冷热源的配置方式达到

  1 引 言 随着半导体技术的持续不断的发展,热敏电阻作为一种新型感温元件应用愈来愈普遍。他具有体积小、灵敏度较高、重量轻、热惯性小、寿命长以及价格实惠公道等优点。 传统的热敏电阻温度计硬件上大多采用普通单片机(MCS-51系列)+A/D转换器以及LED显示模块构成,分立元件多、功耗大、设计复杂且难以调试;软件上也多采用冗长繁琐的汇编语言来实现,设计效率低、可移植性差、性能很难保证。 目前,嵌入式系统的应用已确定进入到一个高、低端并行发展的阶段,其标志就是32位微控制器的发展。ARM(Advanced RISC Machines)是嵌入式系统应用较为广泛的一种32位微处理器核,具有体积小、功耗低、集成度高、硬件调试方便和可移植操作系统等优点

  研讨会 : Tektronix 嵌入式系统调试及混合信号系统验证测试中示波器的使用

  世界苦Arm久矣,不是因为它不够强大,而是开源更具性价比。RISC-V作为x86、Arm后第三大指令集,备受我国半导体厂商的喜爱。尤其是在MCU领域 ...

  该产品线提供了并行SRAM的低成本替代方案,容量高达 4 Mb,具有143 MHz SPI SQI™通信功能为实现用户对更大更快的 SRAM 的普遍需求, ...

  第五代至强可扩展处理器的最新MLPerf测试结果充分展示了英特尔及其生态合作伙伴在提升生成式AI性能方面的成果。...

  嵌入式硬件专家 SolidRun 宣布发布围绕 Hailo-15 神经处理单元 (NPU) 构建的模块系统 (SOM),每秒可实现高达 20 TOPS算力,以支持 ...

  AMD携手OEM合作伙伴联想和华硕,以及ECO合作伙伴百川智能、有道、游戏加加、生数科技、始智AI等共庆AI PC腾飞之年,展示了Ryzen AI PCECO的强大实力...

  站点相关:嵌入式处理器嵌入式操作系统开发相关FPGA/DSP总线与接口数据处理消费电子工业电子汽车电子其他技术存储技术综合资讯论坛电子百科